资源类型

期刊论文 422

年份

2024 1

2023 24

2022 58

2021 35

2020 32

2019 36

2018 19

2017 13

2016 15

2015 10

2014 16

2013 26

2012 9

2011 18

2010 12

2009 23

2008 19

2007 17

2006 4

2005 5

展开 ︾

关键词

混凝土 16

三峡工程 7

三峡升船机 4

混凝土坝 3

混凝土面板堆石坝 3

三点弯曲梁 2

元胞自动机模型 2

升船机 2

实时监控 2

性能化设计 2

承载力 2

收缩 2

施工技术 2

混凝土浇筑 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of construction-induced damage on the degradation of freeze–thawed lightweight cellular concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 781-792 doi: 10.1007/s11709-021-0733-9

摘要: During the construction of lightweight cellular concrete (LCC), material damage frequently occurs, causing the degradation and deterioration of the mechanical performance, durability, and subgrade quality of LCC. The construction-induced damage can be more significant than those from the service environment of LCC, such as freeze–thaw (F–T) action in cold regions. However, the effect of construction-induced damage on LCC during F–T cycles is often ignored and the deterioration mechanisms are not yet clarified. In this study, we investigated the factors causing damage during construction using a sample preparation method established to simulate the damage in the laboratory setting. We conducted F–T cycle tests and microstructural characterization to study the effect of microstructural damage on the overall strength of LCC with different water contents under F–T actions. We established the relationship between the pore-area ratio and F–T cycle times, pore-area ratio, and strength, as well as the F–T cycle times and strength under different damage forms. The damage evolution is provided with the rationality of the damage equation, verified by comparing the measured and predicted damage variables. This study would serve as a guide for the construction and performance of LCC in cold regions.

关键词: lightweight cellular concrete     construction-induced damage     freeze-thaw action     microstructure     degradation mechanism    

Quality evaluation of lightweight cellular concrete by an ultrasound-based method

Xin LIU; Dongning SUN; Jinhe LIAO; Zhiwei SHAO; Yunqiang SHI; Siqing ZHANG; Yunlong YAO; Baoning HONG

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1170-1182 doi: 10.1007/s11709-022-0874-5

摘要: The accuracy of subgrade quality evaluation is important for road safety assessment. Since there is little research work devoted to testing lightweight cellular concrete (LCC) by an ultrasound-based method, the quantitative relation between ultrasonic testing results and the quality of LCC subgrade is not well understood. In this paper, the quality of LCC subgrade was evaluated with respect to compressive strength and crack discrimination. The relation between ultrasonic testing results and LCC quality was explored through indoor tests. Based on the quantitative relation between ultrasonic pulse velocity and compressive strength of LCC, a fitting formula was established. Moreover, after the LCC became cracked, the ultrasonic pulse velocity and ultrasonic pulse amplitude decreased. After determining the lower limiting values of the ultrasonic pulse velocity and ultrasonic pulse amplitude through the statistical data, it could be calculated whether there were cracks in LCC subgrade. The ultrasonic testing results showed that the compressive strength of the LCC subgrade was suitable for purpose and there was no crack in the subgrade. Then core samples were taken from the subgrade. Comparisons between ultrasonic testing results of subgrade and test results of core samples demonstrated a good agreement.

关键词: lightweight cellular concrete     subgrade     ultrasound testing     quality evaluation     crack discrimination    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 364-377 doi: 10.1007/s11709-021-0702-3

摘要: In this study, a fully precast steel–ultrahigh performance concrete (UHPC) lightweight composite bridge (LWCB) was proposed based on Mapu Bridge, aiming at accelerating construction in bridge engineering. Cast-in-place joints are generally the controlling factor of segmental structures. Therefore, an innovative girder-to-girder joint that is suitable for LWCB was developed. A specimen consisting of two prefabricated steel–UHPC composite girder parts and one post-cast joint part was fabricated to determine if the joint can effectively transfer load between girders. The flexural behavior of the specimen under a negative bending moment was explored. Finite element analyses of Mapu Bridge showed that the nominal stress of critical sections could meet the required stress, indicating that the design is reasonable. The fatigue performance of the UHPC deck was assessed based on past research, and results revealed that the fatigue performance could meet the design requirements. Based on the test results, a crack width prediction method for the joint interface, a simplified calculation method for the design moment, and a deflection calculation method for the steel–UHPC composite girder in consideration of the UHPC tensile stiffness effect were presented. Good agreements were achieved between the predicted values and test results.

关键词: accelerated bridge construction     ultrahigh-performance concrete     steel–UHPC composite bridge     UHPC girder-to-girder joint    

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 278-293 doi: 10.1007/s11709-011-0120-z

摘要: This paper presents the design guide based on analytical, numerical and experimental investigation of Steel-concrete-steel (SCS) sandwich structural members comprising a lightweight concrete core with density ranged from 1300 to 1445 kg/m subjected to static, impact and blast loads. The performance of lightweight sandwich members is also compared with similar members with normal weight concrete core and ultra high strength concrete core ( = 180 MPa). Novel J-hook shear connectors were invented to prevent the separation of face plates from the concrete core under extreme loads and their uses are not restricted by the concrete core thickness. Flexural and punching are the primary modes of failure under static point load. Impact test results show that the SCS sandwich panels with the J-hook connectors are capable of resisting impact load with less damage in comparison than equivalent stiffened steel plate panels. Blast tests with 100 kg TNT were performed on SCS sandwich specimens to investigate the key parameters that affect the blast resistance of SCS sandwich structure. Plastic yield line method is proposed to predict the plastic capacity and post peak large deflection of the sandwich plates. Finally, an energy balanced model is developed to analyze the global behavior of SCS sandwich panels subjected to dynamic load.

关键词: blast load     composite structure     impact load     lightweight concrete     sandwich plate     J-hook connector    

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable

Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 96-106 doi: 10.1007/s11465-018-0498-6

摘要:

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

关键词: thermoplastic polyurethane     microcellular injection molding     cavity expansion     compressive strength     hysteresis loss ratio    

Regulation of T cell immunity by cellular metabolism

null

《医学前沿(英文)》 2018年 第12卷 第4期   页码 463-472 doi: 10.1007/s11684-018-0668-2

摘要:

T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific metabolic programs are tightly controlled to mediate T cell immune responses, and alterations in T cell metabolism may result in many immunological disorders. In this review, we will summarize the main T cell metabolic pathways and the important factors participating in T cell metabolic programming during T cell homeostasis, differentiation, and function.

关键词: T cell immunity     metabolic pathways     nutrient uptake     metabolic checkpoints    

A lightweight authentication scheme with user untraceability

Kuo-Hui YEH

《信息与电子工程前沿(英文)》 2015年 第16卷 第4期   页码 259-271 doi: 10.1631/FITEE.1400232

摘要: With the rapid growth of electronic commerce and associated demands on variants of Internet based applications, application systems providing network resources and business services are in high demand around the world. To guarantee robust security and computational efficiency for service retrieval, a variety of authentication schemes have been proposed. However, most of these schemes have been found to be lacking when subject to a formal security analysis. Recently, Chang (2014) introduced a formally provable secure authentication protocol with the property of user-untraceability. Unfortunately, based on our analysis, the proposed scheme fails to provide the property of user-untraceability as claimed, and is insecure against user impersonation attack, server counterfeit attack, and man-in-the-middle attack. In this paper, we demonstrate the details of these malicious attacks. A security enhanced authentication scheme is proposed to eliminate all identified weaknesses.

关键词: Authentication     Privacy     Security     Smart card     Untraceability    

Parametric sensitivity analysis of cellular diaphragm wall

Xi CHEN, Wei XU

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 358-364 doi: 10.1007/s11709-012-0177-3

摘要: The deformation law of the cellular diaphragm wall in deep foundation pits was studied through numerical simulation. Based on the example of the dock wall in engineering, the full three-dimensional finite element model was used to simulate the excavation of the foundation pit. Interaction between the cellular diaphragm wall and the soil was also taken into account in the calculation. The results indicated that the maximum lateral displacement, which is the evaluation index of sensitivity analysis, appeared on the top of the interior longitudinal wall with an excavation depth of 10 m. The centrifuge model test was carried out to study the deformation regulation for a cellular diaphragm wall. The most sensitive factor was found by adjusting the length of the partition wall, the spacing of the partition wall and the thickness of the wall. In the end, a suggestion was proposed to optimize the cellular diaphragm by adjusting the length of the partition wall.

关键词: cellular diaphragm wall     sensitivity analysis     optimization     centrifuge model test    

Temperature and structural responses of a single-section utility tunnel throughout fire exposure

Yanmin YANG; Ying XIONG; Yongqing LI; Xiangkun MENG; Peng WANG; Tianyuan CAI

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1351-1364 doi: 10.1007/s11709-022-0857-6

摘要: In this study, fire tests of four single-section scaled-down utility tunnels were conducted. By analyzing temperature and structural responses of the utility tunnel throughout the fire exposure, the effects on the fire behavior of two different construction methods, cast-in-situ and prefabricated, and of two different materials, ordinary concrete and full lightweight concrete, were explored. The results of the study showed that the shear failure of the cast-in-situ utility tunnel occurred at the end of the top or bottom plate, and the failure of the prefabricated utility tunnel occurred at the junction of the prefabricated member and post-cast concrete. As the temperature increased, the temperature gradient along the thickness direction of the tunnel became apparent. The maximum temperature difference between the inner and outer wall surfaces was 531.7 °C. The highest temperature occurred in the cooling stage after stopping the heating, which provided a reference for the fire protection design and rescue of the utility tunnel. The displacement of the top plate of the prefabricated utility tunnel was 16.8 mm, which was 41.8% larger than that of the cast-in-situ utility tunnel. The bearing capacities of the ordinary concrete utility tunnel and full lightweight concrete utility tunnel after the fire loss were 27% and 16.8%, respectively. The full lightweight concrete utility tunnel exhibited good ductility and fire resistance and high collapse resistance.

关键词: full lightweight concrete     construction methods     temperature response     structural response     fire test    

Liver cell therapies: cellular sources and grafting strategies

《医学前沿(英文)》 2023年 第17卷 第3期   页码 432-457 doi: 10.1007/s11684-023-1002-1

摘要: The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver’s cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.

关键词: liver regeneration     hepatocytes     cholangiocytes     stem cells     organoids     regulatory mechanisms     transplantation/grafting strategies    

Optimization of Land-use Based on the Theory of Cellular Automata and Value of Ecosystem Services

Lian-fu Jiang,Guo-xian Xu,Hao Jiang

《工程管理前沿(英文)》 2014年 第1卷 第4期   页码 395-401 doi: 10.15302/J-FEM-2014058

摘要: The main objective of the study was to confirm the location and configuration of “Habitat Conservation Area” in Dongguan City. The land utilization condition in the target city was simulated using Arc GIS and Geo SOS software basing on multi-criteria decision model of Cellular Automata (CA). Both the simulation result and accuracy satisfied well the basic requirements. In addition to multi-criteria decision model, space optimization technique was used as well in simulation experiments.

关键词: Ecosystem service function     optimization of land use     Cellular Automata (CA)    

A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash

Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1241-1

摘要: •Ultra-lightweight ceramsite is prepared with 80% fly ash. •SiO2, Al2O3, and flux contents significantly influence the performance of ceramsite. •The expansion of ceramsite is caused by the formation of a dense glaze and gas. •The bulk density of ultra-lightweight ceramsite is only 340 kg/m3. The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years. The most common method of fly ash disposal is solidification-stabilization-landfill, and the most common reuse is low-value-added building materials. A novel processing method for preparing ultra-lightweight ceramsite with fly ash was developed. The results show that the optimal parameters for preparation of ultra-lightweight ceramsite are as follows: mass ratio of fly ash:kaolin:diatomite= 80:15:5, preheating temperature of 800°C, preheating time of 5 min, sintering temperature of 1220°C, and sintering time of 10 min. The expansion agent is perlite, at 10 wt.% addition. Finally, a ceramsite with bulk density of 340 kg/m3, particle density of 0.68 g/cm3, and cylinder compressive strength of 1.02 MPa was obtained. Because of its low density and high porosity, ultra-lightweight ceramsite has excellent thermal insulation performance, and its strength is generally low, so it is usually used in the production of thermal insulation concrete and its products. The formation of a liquid-phase component on the surface, and generation of a gas phase inside ceramsite during the sintering process, make it possible to control the production of the suitable liquid phase and gas in this system, resulting in an optimization of the expansion behavior and microstructure of ceramsite. These characteristics show the feasibility of industrial applications of fly ash for the production of ultra-lightweight ceramsite, which could not only produce economic benefits, but also conserve land resources and protect the environment.

关键词: Fly ash     Ultra-lightweight ceramsite     Expansion mechanism     Sintering process    

Lightweight design of an electric bus body structure with analytical target cascading

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0718-y

摘要: Lightweight designs of new-energy vehicles can reduce energy consumption, thereby improving driving mileage. In this study, a lightweight design of a newly developed multi-material electric bus body structure is examined in combination with analytical target cascading (ATC). By proposing an ATC-based two-level optimization strategy, the original lightweight design problem is decomposed into the system level and three subsystem levels. The system-level optimization model is related to mass minimization with all the structural modal frequency constraints, while each subsystem-level optimization model is related to the sub-structural performance objective with sub-structure mass constraints. To enhance the interaction between two-level systems, each subsystem-level objective is reformulated as a penalty-based function coordinated with the system-level objective. To guarantee the accuracy of the model-based analysis, a finite element model is validated through experimental modal test. A sequential quadratic programming algorithm is used to address the defined optimization problem for effective convergence. Compared with the initial design, the total mass is reduced by 49 kg, and the torsional stiffness is increased by 17.5%. In addition, the obtained design is also validated through strength analysis.

关键词: electric vehicle     body in white (BIW)     lightweight     analytical target cascading (ATC)    

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 442-459 doi: 10.1007/s11465-018-0488-8

摘要:

Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson’s ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

关键词: architectured material     cellular materials     multi-scale modeling     homogenization method     effective material properties     computational method    

标题 作者 时间 类型 操作

Influence of construction-induced damage on the degradation of freeze–thawed lightweight cellular concrete

期刊论文

Quality evaluation of lightweight cellular concrete by an ultrasound-based method

Xin LIU; Dongning SUN; Jinhe LIAO; Zhiwei SHAO; Yunqiang SHI; Siqing ZHANG; Yunlong YAO; Baoning HONG

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete

期刊论文

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

期刊论文

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

期刊论文

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable

Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG

期刊论文

Regulation of T cell immunity by cellular metabolism

null

期刊论文

A lightweight authentication scheme with user untraceability

Kuo-Hui YEH

期刊论文

Parametric sensitivity analysis of cellular diaphragm wall

Xi CHEN, Wei XU

期刊论文

Temperature and structural responses of a single-section utility tunnel throughout fire exposure

Yanmin YANG; Ying XIONG; Yongqing LI; Xiangkun MENG; Peng WANG; Tianyuan CAI

期刊论文

Liver cell therapies: cellular sources and grafting strategies

期刊论文

Optimization of Land-use Based on the Theory of Cellular Automata and Value of Ecosystem Services

Lian-fu Jiang,Guo-xian Xu,Hao Jiang

期刊论文

A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash

Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin

期刊论文

Lightweight design of an electric bus body structure with analytical target cascading

期刊论文

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

期刊论文